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Learning Objectives

• Explain how to protect privacy when using Wi-Fi data for 
occupant counts inference 

• Apply occupants' biological responses in building controls for 
thermal comfort improvement

• Apply multi-agent deep reinforcement learning algorithms in 
building controls

• Define the major factors that affect the occupancy schedule in a 
residential building 

• Design different types of building systems based on the 
occupant characteristics

• Identify important WiFi-related features to infer occupant 
counts.
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Outline/Agenda

• Background

• Methodology
• Feature engineering

• Algorithm comparison

• Results and conclusions



Background

• U.S. buildings consume 40% of primary energy and account for a 
third of total carbon emission 

• Occupancy information could help to reduce energy while 
enhancing comfort

• Current occupant sensing technologies (CO2 sensor, camera-
based, infrared-based) are expensive or labor-intensive, and 
might raise privacy concerns

Resolutions Definition Application

Occupancy statues Whether space is occupied or not Lighting, HVAC schedule

Occupant counts How many people are in a space Control optimization, e.g. MPC, DCV

Identity Who they are Personalized thermal environment 
management

Activity What they are doing



Objectives

• Occupant counts detection through Wi-Fi
• Leveraging existing infrastructure

• Trade-off between accuracy and privacy
• MAC address-based approach: accurate but has 

privacy concerns

• Connection counts-based approach: protect privacy 
but not accurate

• Research objective
• Propose a new approach to detect occupant 

counts through Wi-Fi, which is non-intrusive, 
accurate, and free of privacy concerns

• Keys: features and algorithms



Method - Feature engineering

• Different type of devices have different mapping relations 
between the Wi-Fi connection counts and occupant counts

Type of 
owners

Type of 
devices

Mapping rules of Wi-Fi connection 
counts and occupant counts

Each occupant averagely has two devices 

(cellphone and computer) connected with Wi-Fi

Each occupant averagely each has one device 

(cellphone) connected with Wi-Fi

Does not locate in the target area, should not 

be counted 

Inhabitants 

Visitors 

Passerby

Could not be used to infer occupant countsOffice 
appliances

Always 
connected

Long-term 
connected

Short-term 
connected

Occasionally 
connected



Method - Feature engineering

• Cluster the devices based on their connection time

• The clustering could be done locally with a simple script 
(edge computing) 
• Protect privacy: No need to upload MAC address

• Reduce the size of data cached and transmitted

• Maintain the major information for occupant counts inference



Method - Algorithm comparison

• Three types of algorithm have been compared 
• Random Forest

• Deep Neuron Network (DNN) - based regression

• Recurrent Neuron Network: Long Short Term Memory

• Two metrics
• Accuracy: CV(RMSE)

• Computational complexity

• Testbed
• An office building in Berkeley, CA



Results – Algorithm comparison

• Random Forest 
outperforms the other 
two

• The sequential 
information does not 
really help
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Results - Feature importance

• Connection counts of long time connected devices (8-12 h) 
are the most important features

• Time-related features are less important than WiFi-related 
features
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Results - Accuracy

• RMSE is 4 in a space with average occupancy of 22–27 
people and peak occupancy of 48–74 people

• Delivering competitive results compared with other 
approaches 
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Conclusions

• Inferring occupant counts are important and challenging

• We proposed a new approach to enhance occupant 
counts detection through feature engineering

• This feature engineering approach and different ML 
algorithms have been tested in an office building testbed

• Our approach is non-intrusive and accurate
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Backup slides: time series decomposition
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Residuals of Wi-Fi connection counts

RMSE: 5.39

R2: 0.17

The information of WiFi counts 
alone is inadequate to predict 
occupant counts


