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Generative AI

AI generated faces

 https://generated.photos/faces/

AI generated music

 https://www.musi-co.com/listen/streams

https://generated.photos/faces/
https://www.musi-co.com/listen/streams
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Generative models

Definition

 Given training data, generate new samples from the same distribution

Motivation

 Generate data

• For fun: artwork, music

• For simulation/planning

 Learn the hidden pattern of data in the latent space
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Generative models

A major task of unsupervised learning

 Supervised: classification, regression

 Unsupervised: clustering, dimension reduction

Evaluation

 Fidelity: generated samples should be indistinguishable from the real data

 Diversity: generated samples should be distributed to cover the real data

 Usefulness: generated samples should be just as useful as the real data
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Generative models

Explicit density: the 

model explicitly define 

and solve the 

representation in the 

latent space

Implicit density: the 

model can sample from 

representation in the 

latent space w/o 

explicitly defining it

Source: Ian Goodfellow, Generative Adversarial Networks (NIPS 2016 tutorial)
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Compressed (latent) representation

 Encoding: develop a compressed representation (latent space) of the input data

 Decoding: generate new data from the sampled vectors in the latent space

Source: JEREMY JORDAN, Variational autoencoders, https://www.jeremyjordan.me/variational-autoencoders/ 
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Generative Adversarial Network

Conventionally, generative models learn the latent representation 

explicitly

 PixelRNN, PixelCNN

 Variational AutoEncoder (VAE) 

Source: Stanford University, 2020, Convolutional 

Neural Networks for Visual Recognition, lecture 13
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Generative Adversarial Network

GAN

 Take game-theoretic approach, learn to generate from training data through 2-

player game

• Generator 

• Discriminator

History

 First proposed by Ian Goodfellow in 2014

 Quickly becomes a hot topic

 2017: the Year of GAN
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Generator: try to fool the discriminator by generating real-looking data

Discriminator: distinguish between real and fake (generated) data
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Generative Adversarial Network

Generator: try to fool the discriminator by generating real-looking data

Discriminator: distinguish between real and fake (generated) data

• The latent space has a 

lower dimension than the 

original space

• Any point in this latent 

space could be mapped to a 

valid data point 

• Randomly sampling adds 

stochasticity
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Generative Adversarial Network

Generator: try to fool the discriminator by generating real-looking data

Discriminator: distinguish between real and fake (generated) data

Objective function

 Discriminator

 Generator

Source: Stanford University, 2020, Convolutional 

Neural Networks for Visual Recognition, lecture 13



Energy Technologies Area

Training GAN

2-player game

Using Back-Propagation algorithm

 Fix the discriminator when training generator

 Fix the generator when training discriminator 
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Training GANs

Putting it all together

Source: Stanford University, 2020, 

Convolutional Neural Networks 

for Visual Recognition, lecture 13
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Training GANs is a challenge

Tips and tricks for training GANs

 https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks
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A modified loss function

Loss function of generator 

Source: Stanford University, 2020, Convolutional 

Neural Networks for Visual Recognition, lecture 13
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Application of GAN in smart building

Using GAN to generated building load profiles

 Published as: Wang, Z. and Hong, T., 2020. Generating realistic building 

electrical load profiles through the Generative Adversarial Network (GAN). Energy 

and Buildings, 224, p.110299.

Why we need to generate building load profiles

 Wide application in the grid operation

• Identification of unnecessary waste

• Load forecasting for generation planning

• …
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Building load generation
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Research question

Can we generate building load directly from smart meter data?

Yes, we can!
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Data

Building Data Genome Project database

 156 office buildings

 56,957 daily loads

 Electrical

 Hourly
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Clustering

Why we need clustering

 Same cluster of load share similar patterns

 GAN is learning these patters

 If you combine different clusters together, the pattern is blurry and hard to learn

Metrics to evaluate clustering

 Davies-Bouldin Index (DBI)
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Clustering: method

K-means

Select the number of clusters

Number of clusters

D
B

I

Selected number 

of clusters: 19
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Clustering: result

Pe
rc

en
ta

ge

10%

8%

6%

4%

2%

0%

We identified 19 clusters

 Working and non-working day patterns

 High and low base-load
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GAN: method

We implemented GAN with 

Keras
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GAN: training

Discriminator 

 the percentage of load profiles that can be detected correctly. 

Generator

 the percentage of generated load profiles that are detected as “real” by the 

discriminator

……

Epochs

A
cc

u
ra

cy
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GAN: result

Learn to capture the load dynamics

 General trend

 Random events
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GAN: validation

Diversity

Fidelity

Usefulness
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GAN: validation
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GAN: validation

Distance 

between 

distributions

Kullback–Leibler

Divergence
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Raw

Step 1: Clustering

40% 

35% 

25% 

Step 2: GAN Step 3: Aggregating

Anonymized

40% 

35% 

25% 

GAN: Applications

Anonymize real building electrical load profiles
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GAN: Applications

Load prediction

Validate load models or detect outliers
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Enhancement to GANs

Wasserstein GAN

Convolutional GAN

LSGAN

Time series GAN
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Some enhancement for time-series data

Need to capture 

 the distribution of features within each time point

 the dynamics of those variables across time
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Solution 1

Use recurrent neural network to capture the temporal dynamics

 Long Short Term Memory

• Mogren, O., 2016. C-RNN-GAN: Continuous recurrent neural networks with 

adversarial training. arXiv preprint arXiv:1611.09904.

 Recurrent Neural Network

• Esteban, C., Hyland, S.L. and Rätsch, G., 2017. Real-valued (medical) time series 

generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633.
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Solution 2

TimeGAN

 Yoon, J., Jarrett, D. and van der Schaar, M., 2019. Time-series generative 

adversarial networks. In Advances in Neural Information Processing Systems (pp. 

5508-5518)

Key idea: Incorporate the temporal dynamics into the objective 

functions
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TimeGAN: contribution/novelty

Use a supervised loss to better capture temporal dynamics

Use an embedding network that provides a lower-dimensional 

adversarial learning space

https://github.com/jsyoon0823/TimeGAN
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Conclusion

We introduced generative models and latent space

We learned Generative Adversarial Networks (GAN): math and psudo-

code

We applied GAN to generate building load profiles

We discussed future work and enhancements to GAN
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Thanks and Questions


