Application of Generative Adversarial
Networks (GANSs) in Smart Buildings

Zhe (Walter) Wang, Lawrence Berkeley Lab

-~
p ,’l\
rrrrrrr |' '|

Energy Technologies Area BERKELEY LAB



Acknowledgement

+ | would like to thank Tianzhen Hong, Wanni Zhang, Xuan Luo, and other
team members in Tianzhen’s team

¢+ | was inspired a lot from the following resources
o lan Goodfellow, Generative Adversarial Networks (NIPS 2016 tutorial)

o UC Berkeley, 2017, Deep Learning Decall, Autoencoders and Representation
Learning

o Stanford University, 2020, Convolutional Neural Networks for Visual Recognition,
lecture 13

o University of Washington, 2017, A Compressed Overview of Sparsity

-~

A
rrorrerernr |"I|

Energy Technologies Area BERKELEY LAB



Generative Al

¢+ Al generated faces

Q

¢+ Al generated music

Q
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https://generated.photos/faces/
https://www.musi-co.com/listen/streams

Agenda

+ Generative models

+ Generative Adversarial Network (GAN)
¢+ Application of GAN in smart building

+ Discussion
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Agenda

¢ Generative models

»
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Generative models

+ Definition
o Given training data, generate new samples from the same distribution
+ Motivation

o Generate data
- For fun: artwork, music

- For simulation/planning

o Learn the hidden pattern of data in the latent space
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Generative models

+ A major task of unsupervised learning
o Supervised: classification, regression
o Unsupervised: clustering, dimension reduction

+ Evaluation
o Fidelity: generated samples should be indistinguishable from the real data
o Diversity: generated samples should be distributed to cover the real data
o Usefulness: generated samples should be just as useful as the real data
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Generative models

¢+ Explicit density: the

Taxonomy of Generative Models

model explicitly define Direct
GAN

and solve the ‘ Generative models

representation in the —

latent s pace Explicit density Implicit density ‘

+ Implicit density: the Tractable density Approximate density L0 T
. : GSN
Fully Visible Belief Nets
model can sample from  Fuly Visiok / T~ |
- PixelRNN/CNN - .
Iatent S pace W/O Change of variables models Variational Autoencoder Boltzmann Machine

(nonlinear ICA)

explicitly defining it

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Energy Technologies Area Source: lan Goodfellow, Generative Adversarial Networks (NIPS 2016 tutorial)
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Compressed (latent) representation

o Encoding: develop a compressed representation (latent space) of the input data
o Decoding: generate new data from the sampled vectors in the latent space

encoder

Smile: 0.99
Skin tone: 0.85
Gender: -0.73

decoder
Beard: 0.85

Glasses: 0.002

Hair color: 0.68
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Agenda

+ Generative Adversarial Network (GAN)
o ldea

o Math: objective function

o Training
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Generative Adversarial Network

+ Conventionally, generative models learn the latent representation
explicitly
o PixelRNN, PixelCNN  p(z) = [[ plasles, ... zi1)
b=

. S Source: Stanford University, 2020, Convolutional
Likelihood of Probability of i'th pixel value . .
image x given all previous pixels Neural Networks for Visual Recognition, lecture 13

o Variational AutoEncoder (VAE)

log pg(z') = E, q,(zlz() [logpg(;r("))] (pg(z'") Does not depend on z)

[ o5) | SAnalx
) ZIPpl\ Z .
= E. |log pole™ | )IA o )] (Bayes” Rule)
AE;
[ () ()
) ) q T
=E. |log Po | 2)po(2) ld | (,.])] (Multiply by constant)
! po(z | z(®)  gqy(2 z | z*)
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; BERKELEY LAB
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Generative Adversarial Network

* GAN

o Take game-theoretic approach, learn to generate from training data through 2-
player game
- Generator
- Discriminator
+ History
o First proposed by lan Goodfellow in 2014
o Quickly becomes a hot topic
o 2017: the Year of GAN
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Generative Adversarial Network

¢+ Generator: try to fool the discriminator by generating real-looking data

¢ Discriminator: distinguish between real and fake (generated) data
Discriminator

Real or Fake

Real load

profiles

Randomly sample
from the latent space

Energ ) RKELEY LAB
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Generative Adversarial Network

¢+ Generator: try to fool the discriminator by generating real-looking data
¢ Discriminator: distinguish between real and fake (generated) data

Discriminator
The latent space has a /,‘\\ 7 ON
lower dimension than the D 0.7 NN
o XK 7 P
original space Real load > (ORXX >;§x\ X ) ———» RealorFake
o . profiles XM
Any point in this latent O T KX = /
il ey Ny e I N /’

space could be mapped to a
valid data point

Randomly sampling adds
stochasticity k ®

Randomly sample
from the latent space
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Generative Adversarial Network

¢+ Generator: try to fool the discriminator by generating real-looking data
¢+ Discriminator: distinguish between real and fake (generated) data
+ Objective function

o Discriminator

n"é?;x []Eﬂ:wpdam log D, () + Enp(z) log(1 _,Dé’d (G, (z)),)}

Discriminator output Discriminator output for
for real data x generated fake data G(z)

o Generator

minE, ;) log(1 — Dy, (Gy, (2)))

Source: Stanford University, 2020, Convolutional -
Neural Networks for Visual Recognition, lecture 13 ’—\I |,'}|
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Training GAN

+ 2-player game

Alternate between:
1. Gradient ascent on discriminator

0255 [Exrpe 108 Doy (2) + Enp(s) 10g(1 = Do, (G, (2)]

2. Gradient descent on generator

min E, .- log(1 — Dy, (G, (2)))
+ Using Back-Propagation algorithm
o Fix the discriminator when training generator

o Fix the generator when training discriminator
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Training GANs

+ Putting it all together

for number of training iterations do

for k steps do

e Sample minibatch of m noise samples {z(%), ..., 2("™)} from noise prior p,(z).

e Sample minibatch of m examples {zV),..., 2™} from data generating distribution

Pdaa ().

e Update the discriminator by ascending its stochastic gradient:

1 i i
Vi, 2. | 10g Dy, () +log(1 — Dy, (Go, (z")))|
end for
e Sample minibatch of m noise samples {2/, ..., 2("™)} from noise prior p,(z).

e Update the generator by ascending its stochastic gradient (improved objective):

Ei end for

Vo,

1

m 4

m

m

Z log(Da, (G, (2?)))
=1

Source: Stanford University, 2020,
Convolutional Neural Networks
for Visual Recognition, lecture 13
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Training GANs is a challenge

+ Tips and tricks for training GANs

a

1. Normalize the inputs 5: Avoid Sparse Gradients: ReLU, MaxPool

* normalize the images between -1 and 1 . . i
¢ the stability of the GAN game suffers if you have sparse gradients

* leakyRelU = good (in both G and D)

® Tanh as the last layer of the generator output

2: A modified loss function * For Downsampling, use: Average Pooling, Conv2d + stride
* For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
In GAN papers, the loss function to optimize G is min (log 1-D) , but in practice folks practically use max log D o PixelShuffle: https://arxiv.org/abs/1609.05158

® because the first formulation has vanishing gradients early on

+ Goodfellow et. al (2014) 6: Use Soft and Noisy Labels

In practice, works well: o . . .
* label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real,

e Flip labels when training generator: real = fake, fake = real then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and
0.3 (for example).
3: Use a spherical Z o Salimans et. al. 2016
* make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

e Dont sample from a Uniform distribution

7: DCGAN / Hybrid Models

® Use DCGAN when you can. It works!
» if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

.~ » Experience Replay
e o Keep a replay buffer of past generations and occassionally show them

.~ o Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations

E n e rgy I ( . » All stability tricks that work for deep deterministic policy gradients

* See Pfau & Vinyals (2016)

® Sample from a gaussian distribution


https://github.com/soumith/ganhacks

A modified loss function

¢+ Loss function of generator

g dominated by region
where sample is
already good

L4 N7l z] | s \ w— log(l - D{G{z))
fake, want to learn : - /

minE, ) log(1 — Dy, (G, (2)))  Sradientsigna max E. () 10g(Do, (G, (2)))

When sample is likely -

from it to improve  [» | . I— ? e
generator. But < | High gradiént sgnal

gradient in this region- j N __u |
is relatively flat! e w e wa “ " Lowgradient signal

Source: Stanford University, 2020, Convolutional ”r:”r A
Neural Networks for Visual Recognition, lecture 13 | |
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Agenda

+ Application of GAN in smart building
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Application of GAN in smart building

+ Using GAN to generated building load profiles

o Published as: Wang, Z. and Hong, T., 2020. Generating realistic building
electrical load profiles through the Generative Adversarial Network (GAN). Energy
and Buildings, 224, p.110299.

+ Why we need to generate building load profiles
o Wide application in the grid operation

- ldentification of unnecessary waste
- Load forecasting for generation planning
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Building load generation

Approaches Limitations

i1. Time consuming to propose detailed i
rassumptions on building physics and i
~ | White-box |——»!occupant behaviors i

2. Might not reflect the dynamic and
Ener istochastic behaviors of real buildings
. _ gy 5
simulation
Load 1 Could ot provide high-resoluion
profiles ~ - | Black-box iinformation at the individual customer level

generation

1. Raise privacy concerns
=i .
:2. Expensive to deploy

- Smart meter

Energy Technologies Area BERKELEY LAB



Research question

¢+ Can we generate building load directly from smart meter data?

¢ Yes, we can!

T
A

Raw smart
meter data

——

N~

Preprocessing:
rescale the daily
trend

Clustering

Generative
Adversarial
Network (GAN)

Generated
load

———

profiles

-~
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o 156 office buildings
o 56,957 dally loads
o Electrical

o Hourly

Data

Building Data Genome Project database

Industry

Commercial Property
Government

Education

T
Timezone

Europe/Zurich
America/Los_Angeles
America/Phoenix
America/New_York
Europe/London
America/Chicago

0.0 0.5

1.0

Large office
Small office

Medium office

Oil
Electricity
District heating

Gas

0.0 0.5

Office type

Primary heating source

Energy Technologies Area
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Clustering

+ Why we need clustering
o Same cluster of load share similar patterns
o GAN is learning these patters
o If you combine different clusters together, the pattern is blurry and hard to learn

+ Metrics to evaluate clustering
o Davies-Bouldin Index (DBI)

8i + 8

Ri; =
fir;'"li

iy

A.
1
DBI = -3 mazizj(Ryj)
i=1
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Clustering: method

¢+ K-means
¢ Select the number of clusters

DBI

3.751

3.504

3.251

3.00 -

2.754

2.50 1

Selected number
of clusters: 19
2.25

10 15 20 25 30 35 40 45

Number of clusters

1.0

Relative Standard Deviation

e
[

0.0

o
o]

0.6 1

0.4 1

|

L

[ 14 clusters
1 19 clusters

-

cluster

i

-

Basel load

Peakl load High loadl duration Riseltime
Statistics of load profiles

Fall Itime
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Relative load

Relative load
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Clustering: result

+ We identified 19 clusters

o Working and non-working day patterns

o High and low base-load

Cluster 0
T T T T T T T T
00 30 6.0 9.0 120 150 180 210
Hour of day
mm Cluster 4
T T T T T T T T
0.0 30 60 9.0 120 150 180 210
Hour of day

Relative load

Relative load
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0.4 4

02 4

0.0
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08

0.6 4

0.4 4

024

0.0

mmmm C|uster 2

Percentage

10%

8% 1

6% 1

4%

2% 1

0% -

9
Cluster

10

11

12

—
T T T T T T T T
0.0 30 6.0 9.0 120 150 180 21.0
Hour of day
mmmm Cluster 7
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GAN: method

Pseudocode

* We Im p I emen ted GA N Wi t h define the discriminator neural network and compile the discriminator model

K eras define the generator neural network

define and compile GAN model by integrating the generator and discriminator neural network, and
setting the parameter of discriminator neural network untrainable

for epoch in range(epochs):
# train the discriminator
sample points randomly from the real load profile dataset
generate fake load profiles from randomly sample seeds with the generaror neural network
combine and shuffle the real and fake load profiles together

train the discriminator model with the combined data points to minimize d loss defined in
(training the parameters in the discriminator neural network)

# train the generator
sample seeds randomly from pre-defined normal distribution

train the GAN model with the sampled seeds to minimize g loss defined in (as the
parameter of discriminator was set untrainable in the GAN model, we are essentially training the
parameters in generator neural network only in this phase)

Energy Technologies Area




GAN: training

¢ Discriminator
o the percentage of load profiles that can be detected correctly.
+ Generator

o the percentage of generated load profiles that are detected as “real” by the
discriminator

1.0

0.81

0.6
Discriminator

...... —— Generator

Accuracy

0.4

0.2

=~

) A
0.0 n
. - - T T T T T rFrroerrerrr
— 0 2 4 6 8 10 140 142 144 146 148 150 —

Energy Technologies Area Epochs BERKELEY LAB




GAN: result

¢+ Learn to capture the load dynamics
o General trend
o Random events

mmmm Cluster 12
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GAN: validation

+
300 ¢
. . High-load duration
+ Fidelity
250 ¢ ‘ Fall Time
. : :
200 ¢ Rise Time E E
2
< 150¢
<
S >
100 ¢
Peak Load
Base Load
SOt
0 ' e s ' o e ' & e ' e
0 6:00 12 18:00 6:00 12 18:00 6:00 12 18:00
Day 1 Day 2 Day 3
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baselLoad mean -
baseload std -

peaklLoad mean -
peakload std-
peakl.oadDuration mean -
peakl.oadDuration std -
riseTime mean -

riseTime std -

Statistics of key parameter

fallTime mean -

fallTime std -

Energy Technologies Area

GAN: validation
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GAN: validation

. 20
+ Distance 5 5!
S 10 real data e
between E generated data E-' |
distributions
o Kullback-Leibler TR TR TR
base load base load
Dlvergence (c) cluster 2 (low KL divergence) (d) cluster 8 (high KL divergence)
Q(z) 1.0
w19 Rrm(E) L o ENEET B
3 0.8
) peaklLoad -
z 0.6
 peakLoadDuration -
@
o, -0.4
> riseTime -
S 0.2
fallTime -

. 0123456 7 8 91011121314151617 18
Energy Technologies Are: Cluster



Relative load

GAN: Applications

+ Anonymize real building electrical load profiles

Step 1: Clustering Step 2: GAN Step 3: Aggregating

12
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GAN: Applications

. . Step 1 - predicting which Step 2 - using GAN to
& L 0 ad p red | Ctl O n clust_er the load profile W_ould generate Ioad profiles
be given exogenous variables for the predicted cluster
1z
10
0.8
Cluster 1. -~ 08
e probability o 04
0.2 MJ_\\/\_/\
0.0 T T
0 6 12 18 24
Input Cluster 2: .
probability o
building type
vintage '<
day type
weather

12

104

0.8 4
e Cluster n: s
probability nal

0.24

\

Q.0

+ Validate load models or detect outliers T

~
) A
FrEereee |'"|

Energy Technologies Area BERKELEY LAB



Agenda

\
\

»

¢ Discussion
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Enhancement to GANs

+ Wasserstein GAN
¢+ Convolutional GAN
+ LSGAN

¢+ Time series GAN
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Some enhancement for time-series data

¢+ Need to capture
o the distribution of features within each time point
Esxy.z~p|108Ys + 3, 108 yi| + Es x, rnp | log(1 — gs) + >, log(1 — 3¢)]

o the dynamics of those variables across time
1, p(x¢|x1:6-1)
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Solution |

¢+ Use recurrent neural network to capture the temporal dynamics

o Long Short Term Memory

- Mogren, O., 2016. C-RNN-GAN: Continuous recurrent neural networks with
adversarial training. arXiv preprint arXiv:1611.09904.

o Recurrent Neural Network

- Esteban, C., Hyland, S.L. and Ratsch, G., 2017. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633.
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Solution 2

¢ TimeGAN

o Yoon, J., Jarrett, D. and van der Schaar, M., 2019. Time-series generative
adversarial networks. In Advances in Neural Information Processing Systems (pp.
5508-5518)

+ Key idea: Incorporate the temporal dynamics into the objective
functions
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Embedding Space

Reconstructions Classifications Unsupervised T S, X1.T  feeee o — YSs Y1:T reeen
ES}{HtX E[D.I]K Loss E dﬁ]—'{ é}-CU
Learn distribution o6 35&
p(S. Xyg)direcdy 10\ R g
Supervised [
€ Hs x [, 1. Loss . | hg,hyup o hg by
Learn conditionals v OLp OLs i O0Lg ILy
AXilS X)L g e =
(XelS, X .06, o6, 08, a9,
Reconstruction i
Real Sequences Random Vectors Loss '
€3S x Hf X € Zs Hﬁzt Provide Latent E S, X.7 5. 7.7

(a) Block Diagram
E’U — EEaXI:TWP :IDg Yys + Et lﬂg yf] + Eﬁuxl:’r”'ﬁ' [ 1Dg(1 - ﬁS) + Zt lﬂg(l - ?}tﬂ

CS — ]ES._.XI:TNP Zt Hht — .g.i't'(hSa ht—la Zt)HE} r::_}I |||\||
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(b) Training Scheme




TimeGAN: contribution/novelty

+ Use a supervised loss to better capture temporal dynamics

¢+ Use an embedding network that provides a lower-dimensional
adversarial learning space

¢ https://github.com/jsyoon0823/TimeGAN
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Conclusion

+ We introduced generative models and latent space

+ We learned Generative Adversarial Networks (GAN): math and psudo-
code

+ We applied GAN to generate building load profiles
¢ \We discussed future work and enhancements to GAN

=~
; A
rrrrrrr |"'|

Energy Technologies Area BERKELEY LAB



Thanks and Questions
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