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Generative Al

* Al generated faces
 https://generated.photos/faces/

* Al generated music
* https://www.musi-co.com/listen/streams
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Generative models

 Definition
* Given training data, generate new samples from the same distribution

 Motivation

 Generate data
* For fun: artwork, music
* For simulation/planning

* Learn the hidden pattern of data in the latent space
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Generative models

* A major task of unsupervised learning
* Supervised learning
* Unsupervised learning
* Reinforcement learning

* Evaluation
* Fidelity: generated samples should be indistinguishable from the real data
* Diversity: generated samples should be distributed to cover the real data
* Usefulness: generated samples should be just as useful as the real data
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Generative models

Two model types Taxonomy of Generative Models Direct
. : GAN
explicitly define and solve L —
the representation in the Explicit density ~ Implicit density
latent space /\ o
. |mp|icit density; the model Tractable density Approximate density ‘ Markov Chain
. : GSN
Fully Visible Belief Net
can sample from ly Visicl el Nets | / T |
representation in the latent . MADE Variational Markov Chain
Spa_C§ W/. o explicitly Ct;angpj:zlfigpig E:rmo Jels Variational Autoencoder  Boltzmann Machine
deflnlng It (nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Representation in the latent space

* The goal of data mining and machine learning is to construct and exploit the
intrinsic low-rank feature space of a given data set

Data Information/knowledge  All ML tasks contain the encoding step
Dimension: ~ millions Dimension: 6 Generative models has the decoding step
Smile: 0.99

Skin tone: 0.85 Source: JEREMY

JORDAN, Variational

Gender: -0.73 -
encoder decoder = autoencoders, |
Beard: 0.85 https://www.jeremyjor
Glasses: 0,002 dan.me/variational-
' autoencoders/

Encoding: develop a compressed | Har<ler088 | Decoding: generate new
representation (latent space) of \ data from the sampled
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Agenda

* Generative Adversarial Network (GAN)
* |dea
 Math: objective function
* Training
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Explicit Generative Models

e Conventionally, generative models learn the latent representation

explicitly
* PixelRNN, PixelCNN

p(z) =

f

Likelihood of
image x

f

 Variational AutoEncoder (VAE)

n
Hp(a:da:l, oy
i=1

Probability of i'th pixel value
given all previous pixels

Ti—1)

Source: Stanford University, 2020, Convolutional Neural
Networks for Visual Recognition, lecture 13

log pg(x') = E, . (zlz®) [100' ])()(.I.‘(i))] (pe(z'") Does not depend on z)
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Generative Adversarial Network

* Do not learn the explicit representation

* GAN

* |Inspired from the Game-theory

* Learn to generate from training data through 2-player game
* Generator
* Discriminator

* History
* First proposed by lan Goodfellow in 2014
* Quickly becomes a hot topic
e 2017: the Year of GAN

B FERKAS

s THE HONG KONG
llmj UNIVERSITY OF SCIENCE
AND TECHNOLOGY



Generative Adversarial Network

* The game between two agents
* Generator
e Discriminator

Discriminator

Real load Real or Fake

profiles

Randomly sample
from the latent space
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Generative Adversarial Network

* Generator: generator data from latent space (decoder)

Discriminator

Real load Real or Fake

profiles

I ,{
fram the latent space ]

| g "

I & L

| ! ab

|
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Generative Adversarial Network

* Discriminator: discriminate whether it is real or fake (generated)

Real load Real or Fake

profiles

Randomly sample o
y \. — lGeneratfled
.\ p< oad profiles
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Generative Adversarial Network

* Generator: try to fool the discriminator by generating real-looking data
* Discriminator: distinguish between real and fake (generated) data

Discriminator
* The latent space has a lower — i,__j:?‘:::\;) N
dimension than the original - OO, - ..
Real load Sy Xy~ M) ————» RealorFake
Space profiles XN _/ sy \
« Any point in this latent space SNl N
could be mapped to a valid T
data point
* Randomly sampling adds < ¢

stochasticity
from the latent space
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Generative Adversarial Network

* Generator: try to fool the discriminator by generating real-looking data
* Discriminator: distinguish between real and fake (generated) data

* Objective function

e Discriminator
0% [Egpyui, 108 D5, () + Earp(s) l08(1 — Doy (Go, (2))]

O

Discriminator output Discriminator output for
for real data x generated fake data G(z)

e Generator

Ilsil?ﬂ Ezmp(z} ]Dg(l — Dﬁd(Gﬁg (z)))

Source: Stanford University, 2020, Convolutional Neural

Networks for Visual Recognition, lecture 13
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Training GANs

* 2-player game

Alternate between:
1. Gradient ascent on discriminator

0255 (B 108 Do, (2) + Earpcy 108(1 = Doy (Go, (2))

2. Gradient descent on generator
r%iqn Ez#up(z} ]ﬂg(l - Dﬁd (Gﬁg (E)))

* Using Back-Propagation
* Fix the discriminator when training generator
* Fix the generator when training discriminator
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Training GANs

* Putting it all together

for number of training iterations do_ _ _ _ _ _ _ _ _ _ _ _ _ o o o o o o e .
| for k steps do | Train discriminator
| e Sample minibatch of m noise samples {z(%), ..., 2("™)} from noise prior p,(z). ' times
: e Sample minibatch of m examples {z(!),..., 2™} from data generating distribution:
| Pdaw(). |
I e Update the discriminator by ascending its stochastic gradient: |
| m |
1 . |
| Vo,— > | log Do,(z) + log(1 — Dy, (Ga, (:)))] !
: i=1 |
| |
cend for _ I

Train generator

1 time

|
' |
|
l Source: Stanford
|
|

e Update the generator by ascending its stochastic gradient (improved objective):

1 m :
V0, 13 2 108(Do, (Go, ()

University, 2020,
Convolutional Neural

' Networks for Visual

fmem THEHOI — 7, T T T T T T T T T T m
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Training GANSs is a challenge

* Tips and tricks for training GANs

* https://github.com/soumith/ganhacks
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1. Normalize the inputs

* normalize the images between -1 and 1

® Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D) , but in practice folks practically use max log D

e because the first formulation has vanishing gradients early an

e Goodfellow et. al (2014)
In practice, works well:

o Flip labels when training generator: real = fake, fake = real

3: Use a spherical Z

e Dont sample from a Uniform distribution

® Sample from a gaussian distribution

5: Avoid Sparse Gradients: ReLU, MaxPool

¢ the stability of the GAN game suffers if you have sparse gradients
* leakyRelU = good (in both G and D)
* For Downsampling, use: Average Pooling, Conv2d + stride

* For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
o PixelShuffle: https://arxiv.org/abs/1609.05158

6: Use Soft and Noisy Labels

* label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real,
then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and
0.3 (for example).

o Salimans et. al. 2016

* make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

7: DCGAN / Hybrid Models

® Use DCGAN when you can. It works!

» if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

» Experience Replay

o Keep a replay buffer of past generations and occassionally show them

o Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
» All stability tricks that work for deep deterministic policy gradients
* See Pfau & Vinyals (2016)


https://github.com/soumith/ganhacks

A modified loss function

 Loss function of generator

minE, ., log(1 — Dy, (G, (2))) ~ radentsignal max E.p(z) log(Do,(Go, (2)))

g dominated by region
where sample is
already good

3 L4 TN iFls] | . — (1= DG
When sample is likely: | N seDiG
fake, want to learn : - :

/ )

;rg:;;grln"épurfve ’,..«f’ - High gradient signal
gradient in this region- j

is relatively flat! o N “ " Lowgradient signal

=
=
P

Source: Stanford University, 2020, Convolutional Neural
& FEHZAD Networks for Visual Recognition, lecture 13
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Agenda

* Application of GAN in smart building
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Application of GAN in smart building

* Using GAN to generated building load profiles

* Published as: Wang, Z. and Hong, T., 2020. Generating realistic building
electrical load profiles through the Generative Adversarial Network (GAN).
Energy and Buildings, 224, p.110299.

* Why we need to generate building load profiles

* Wide application in the grid operation
 |dentification of unnecessary waste
* Load forecasting for generation planning
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Building load generation

Approaches Limitations

i1. Time consuming to propose detailed i
rassumptions on building physics and i
~ | White-box ——sioccupant behaviors

2. Might not reflect the dynamic and
Ener istochastic behaviors of real buildings
. _ gy 5
simulation
Load 1 Could ot provide high-resoluion
profiles ~ - | Black-box iinformation at the individual customer level

generation

1. Raise privacy concerns
=i .
:2. Expensive to deploy

- Smart meter
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Research question

* Can we generate building load directly from smart meter data?

Y -
— . -

reprocessing: Generative Generated
Raw smartl—( rescale the daily Clustering | —— Adversarial —— /4
meter data trend Network (GAN) profiles
N~

YES WE CAN
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Data

* Building Data Genome Project database

¢ 156 Office bUlIdlngS Industry Office type
° 56,957 dally loads commercial Property Large office
. .
Electrlcal Government Small office
* Hourly
Education Medium office
Timelzone | Primary heel\ting source
Europe/Zurich Oil
America/Los_Angeles o
America/Phoenix Electricity
America/New_York District heating
Europe/London
America/Chicago Gas
0.0 0.5 1.0 0.0 0.5

B FERKAS

T THE HONG KONG

ll JJ UNIVERSITY OF SCIENCE
AND TECHNOLOGY

=



Clustering

* Why we need clustering
 Same cluster of load share similar patterns
* GAN is learning these patters

* If you combine different clusters together, the pattern is blurry and hard to
learn

* Metrics to evaluate clustering
* Davies-Bouldin Index (DBI)

8i + 8
ffru

R —

i

A.
1
DBI = I z F.i'i'EE.-t'j;éj{H,'J'}
i=1
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Clustering: method

e K-means

e Select the number of clusters

3.751

3.504

3.251

3.00 -

DBI

2.754

2.50+

2.254

Selected number
of clusters: 19

10 15
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Clustering: result

* We identified 19 clusters
* Working and non-working day patterns

Relative load

Relative load
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GAN: method

Pseudocode

* We | m p I e m e nted GA N W Ith define the discriminator neural network and compile the discriminator model
Ke ra S define the generator neural network

define and compile GAN model by integrating the generator and discriminator neural network, and
setting the parameter of discriminator neural network untrainable

for epoch in range(epochs):
# train the discriminator
sample points randomly from the real load profile dataset
generate fake load profiles from randomly sample seeds with the generaror neural network
combine and shuffle the real and fake load profiles together

train the discriminator model with the combined data points to minimize d loss defined in
(training the parameters in the discriminator neural network)

# train the generator
sample seeds randomly from pre-defined normal distribution

train the GAN model with the sampled seeds to minimize g loss defined in (as the
arameter of discriminator was set untrainable in the GAN model, we are essentially training the
® EEMNEAD P | v e

s TLE HONG KONG parameters in generafor neural network only 1n this phase)
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GAN: training

e Discriminator
* the percentage of load profiles that can be detected correctly.

e Generator

* the percentage of generated load profiles that are detected as “real” by the
discriminator

1.0

0.8

______

0.6

------
0.4

Accuracy
©

0.2

0.0
% BEEM 0 2 4 6 8 10 140 142 144 146 148 150
1 THE HONG KONG
llmj UNIVERSITY OF SCIENCE Epochs
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GAN: result

* Learn to capture the load dynamics
 General trend
e Random events

|
i
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GAN: validation

300 ¢

* Diversity
. . Hng.h-load durauor:
* Fidelity >

250 ¢

‘Fall Time

e Usefulness

200 ¢ Rise Time

150¢

Load (kw)

100 ¢

Peak Load

Base Load
50¢

0 6:00 12 18:00 6:00 12 18:00 6:00 12 18:00
g Day 2 Day 3
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GAN: validation

baselLoad mean - .
3 0.16
3 baseLoad std -
P
& peakLoad mean -
= -0.08
g peakload std-
= peakLoadDuration_mean -
v -0.00
o peakLoadDuration_std -
A riseTime mean -
i -—0.08
A riseTime std -
IS
= fallTime mean -
” —-0.16

fallTime std -
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GAN: validation

. 20
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S 10 real data 5
between % generated data E-' |
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GAN: Applications

* Anonymize real building electrical load profiles

Step 1: Clustering Step 2: GAN Step 3: Aggregating

e Cluster 2
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GAN: Applications

Step 1 - predicting which Step 2 - using GAN to
Y Loa d red I Ctl O n cluster the load profile would generate load profiles
p be given exogenous variables for the predicted cluster

12

10

0.8

Cluster 1: 08
' probability 041
0.2 4 /\/\/\V\f\l\

0.0

\J

T T
[ 12 18 24

o

Input Cluster 2: .
probability o

building type

vintage '<

day type

weather

\_ Cluster n: o /\/\
probability 04l / \\

0.24

\

e Validate load models or detect outliers
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e Discussion
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Enhancement to GANs

* Wasserstein GAN
e Convolutional GAN
* LSGAN

* Time series GAN
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Some enhancement for time-series data

* Need to capture
* the distribution of features within each time point

Es,xl:ngj [IDE; Yys + Zt lﬂg yt} + Es,xl:Twﬁ[IDg(l T :'-'}S) T Zt lﬂg(l _ ?}tﬂ
* the dynamics of those variables across time

“t p(xt |Xl:t—1)
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Solution 1

* Use recurrent neural network to capture the temporal dynamics

* Long Short Term Memory

* Mogren, 0., 2016. C-RNN-GAN: Continuous recurrent neural networks with adversarial
training. arXiv preprint arXiv:1611.09904.

 Recurrent Neural Network

e Esteban, C., Hyland, S.L. and Ratsch, G., 2017. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633.
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Solution 2

* TimeGAN

* Yoon, J., Jarrett, D. and van der Schaar, M., 2019. Time-series generative
adversarial networks. In Advances in Neural Information Processing
Systems (pp. 5508-5518)

* Key idea: Incorporate the temporal dynamics into the objective
functions
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Embedding Space

Reconstructions Classifications Unsupervised T S, X1.T  feeee o — YSs Y1:T reeen
ES}{Ht"’F E[D.l]}i Loss E dlgﬁ é}-CU
Learn distribution o6 35.::
p(S, X.7) directly A R U i o J
Supervised [
€ Hs x 1, H L . (hghyp e hg By
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AXilS X)L g e =
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Real Sequences Random Vectors Loss '
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(a) Block Diagram
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(b) Training Scheme




TimeGAN: contribution/novelty

* Use a supervised loss to better capture temporal dynamics

* Use an embedding network that provides a lower-dimensional
adversarial learning space

* https://github.com/jsyoon0823/TimeGAN
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Conclusion

* We introduced generative models and latent space

* We learned Generative Adversarial Networks (GAN): math and
psudo-code

* We applied GAN to generate building load profiles
* We discussed future work and enhancements to GAN
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