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• I was inspired a lot from the following resources
• David Silver, Reinforcement Learning, University College London 

COMPM050/COMPGI13, https://www.davidsilver.uk/teaching/
• Sergey Levine, Deep Reinforcement Learning, University of California Berkeley 

CS285, https://rail.eecs.berkeley.edu/deeprlcourse/

• All resources (videos and slides) for the above two courses are open source and free for download
• I strongly recommend you to take a look if you are interested in this topic
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• Building is important
• Building is a significant energy 

consumer and carbon emitter
• 40% in U.S./U.K.
• 30% in China

• A source of enormous 
untapped efficiency potential
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Source: NASA

https://www.iea.org/topics/buildings

Building Energy System



• Building is complicated
• Complex electrical and 

thermal systems 
• HVAC
• Electrical vehicle
• Battery
• PV
• Human interaction
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Neukomm, M., Nubbe, V. and Fares, R., 2019. Grid-interactive efficient buildings 
technical report series: Overview of research challenges and gaps.

Building Energy System



• Operate the building as we wish
• Guarantee comfort
• Enhance energy efficiency
• Grid-interactive
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Building control
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• Operate the building as we wish
• Guarantee comfort
• Enhance energy efficiency
• Grid-interactive

• RL: The topic of today
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• What is Reinforcement Learning
• Framework of RL
• Math behind RL

• Markovian Decision Process
• Bellman Equation

• Q-learning

8

Content



• A branch of Machine Learning for dynamic decision making
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Immediate rewards No rewards

Delayed rewards
Your action will affect 
future states

Reinforcement Learning



• A branch of Machine Learning for dynamic decision making
• Successful application in many fields
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AlphaGo beat Lee Sedol, 2016 OpenAI Five beat OG, 2019

https://www.youtube.com/watch?v=tfb6aEUMC04

Reinforcement Learning



• At each time step
• The agent 

• Observe the state St
• Calculate the action At

• The environment
• Execute the action At
• Emit the reward Rt
• Emit the new state St+1 (S’)

• Move to the next time step
• Very typical for loop
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Agent

EnvironmentDavid Silver, Reinforcement Learning, University College London 
COMPM050/COMPGI13

Reinforcement Learning
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Reinforcement Learning for building control



• The future is independent of the past given the present

• The state captures all relevant information from the history
• Once the state is known, the history may be thrown away
• The state is a sufficient statistic of the future

13David Silver, Reinforcement Learning, University College London 
COMPM050/COMPGI13

Markov Property



• A Markov Process (or Markov Chain) is memoryless random 
process, i.e. a sequence of random states with the Markov 
property

14David Silver, Reinforcement Learning, University College London 
COMPM050/COMPGI13

Markov Process (MP)



• Is the following state a Markov Process?
•
•

• The process will become a Markov Process if you can measure 
all the relevant information

• What if you cannot measure all the relevant information?
• Partially Markov Process

• Very common in practice
• The problem is not properly formed
• Some states are not measurable

• Out of the scope of this lecture
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• A Markov Reward Process is a Markov chain with values

16David Silver, Reinforcement Learning, University College London 
COMPM050/COMPGI13

Markov Reward Process (MRP)



• Why discount?
• Current reward worth more than future reward (interests rate)
• Future is associated with uncertainty
• Mathematically stable

17David Silver, Reinforcement Learning, University College London 
COMPM050/COMPGI13

Total Return



• A Markov decision process (MDP) is a Markov reward process 
with decisions. 
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Markov Decision Process (MDP)



• Fully define the behavior of an agent
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Policy



• v-function
• Defines on 

state
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• q-function
• Defines on 

state, action 
pair

Value function
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V-function Q-function

Bellman Equation



• Why we bother to learn MDP and BE?
• We want to know the policy

• If we know V-function, can we extract policy?
• No!

• If we know Q-function, can we extract policy?
• Yes! 
• Just select the action with the largest Q-value

• The next question
• How can we solve the BE to learn Q-function? 
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Q-function



• BE

• BOE

• Many iterative solution methods
• Value Iteration
• Policy Iteration
• Q-learning
• SARSA
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Bellman Optimality Equation



• How to represent the Q function
• Table: Q-table
• Neural Network: Deep Q learning

• How to learn the Q function
• Bellman Optimality Equation
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Q-learning



• Key: Update the Q-function towards the “true” value

• The immediate reward is true, contains more information
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(select the best action)
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“True” Q-value

Q-learning



• The maze problem
• Exit the maze as soon as possible

• The reward of each step is -1
• Ignore discount factor
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Q-learning
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This Q table can guide you out of this maze!

Q-learning



• Exploit 
• Select the best action you have tested
• Make fully use of the previous experience
• Problem: stuck in local maximum

• Explore 
• Explore untested actions might help you 

make better selection in the future
• Even if it reduces your immediate rewards

• Epsilon-greedy
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Exploration versus Exploitation



• Exploit 
• Select the best action you have tested
• Make fully use of the previous experience
• Problem: stuck in local maximum

• Explore 
• Explore untested actions might help you 

make better selection in the future
• Even if it reduces your immediate rewards

• Epsilon-greedy
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Go to your favorite restaurant

Try new restaurant

For the most time, go to your favorite;
Try new restaurant from time to time

Exploration versus Exploitation



• Three generation of building control
• Reinforcement Learning: framework
• MDP and Bellman Equation
• Q-table learning
• Exploration versus exploitation

• Epsilon-greedy
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Summary



• RL is a very fancy and fast evolving subject
• Q-table learning is one of the many RL algorithms

• Epsilon-greedy is one of many methods for exploration versus exploitation
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Summary
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